
Estimation, not significance

Steven M. Holland

Steven M. Holland. Department of Geology, University of Georgia, Athens, Georgia 30602-2501, U.S.A.
E-mail: stratum@uga.edu

Accepted: 30 October 2018
First published online: 7 January 2019

Introduction

A core part of the growth of paleobiology in
the 1970s was an increased emphasis on statis-
tical evaluation of data (Sepkoski 2012). Paral-
leling the use of statistics in other fields, it
reflected a growing realization that patterns in
data might arise by chance, and that these
might suggest relationships that were not real.
Three main approaches were adopted, includ-
ing critical values of statistics compared with
their observed values, p-values compared with
levels of significance (typically 0.05), and confi-
dence intervals on parameter estimates.
p-values and significance testing have increas-

ingly come under fire, and the arguments over
their use have been covered widely (Gardner
and Altman 1986; Munroe 2011; Vermeesch
2011; Nuzzo 2014; Greenland et al. 2016; Ganesh
and Cave 2018). As far back as 1990, some jour-
nals chose to not publish papers that use
p-values (Fidler et al. 2004). Momentum has
grown, and other journals are following suit
by not publishing papers with p-values or state-
ments about “significant differences” (Trafimow
and Marks 2015; Gill 2018). Some journals have
opted for a softer position of encouraging confi-
dence intervals but not prohibiting p-values
(Finch et al. 2004; Ranstam 2012).
In response, the American Statistical Associ-

ation issued a statement on p-values with a goal
of moving research into a “post p < 0.05 era”
(Wasserstein and Lazar 2016). Others have
argued that the problem is not p-values, but a
lack of training in data analysis (Fidler et al.
2004). Even if p-values were used correctly,
though, approaches such as confidence intervals
and credible intervals are more useful, because
they estimate the values that interest us and
provide a measure of our uncertainty in those
estimates. At least in the case of confidence

intervals, they can be obtained with little or no
additional effort.
In discussions with colleagues, I have rea-

lized that many are unaware of this broader
debate. Although space does not permit cover-
ing all of the criticisms of p-values and signifi-
cance tests, I want to present some of the core
ideas and make the case that methods of esti-
mation through confidence intervals and cred-
ible intervals, coupled with model selection,
serve our goals better, and that we ought to
steer away whenever possible from p-values
and significance tests.

A p-Value May Not Be Telling YouWhat You
Think It Is

The definition of a p-value is innocuous
enough: it is the probability of observing a stat-
istic or one more extreme if the null hypothesis
is true. In other words, we assume that the null
hypothesis is true, and based on that assump-
tion, we calculate the probability we would
observe our statistic or a more unusual or
extreme value. If that probability is small relative
to what we choose as our significance level
(typically but not necessarily 0.05), we reject
the null hypothesis. If that probability is large,
we accept the null.
It is important to realize that we never prove

that the null hypothesis is true or that it is false;
that is impossible, because the p-value tells us that
there is some probability that our statistic could
have arisen if the null was true. For example,
the probability of drawing a flush (five cards
all of the same suit) in a game of poker is
0.00198, far less than 0.05, but drawing one
does not prove that the deck is stacked. All
that we can do is use statistical inference to
decide how to proceed. By rejecting the null
hypothesis, we will act as if it is false, knowing
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full well that it might be true, in which case we
have made a type I error. If we accept the null
hypothesis, we will act as if it is true, being
aware that we have made a type II error if the
hypothesis is actually false.
It is common to hear people state that a

p-value is the probability that your null hypoth-
esis is true, but it is not. A simple analogy
shows why. Suppose you tally the color of
frogs and find that 75% of frogs are green.
You could then say, “If it is a frog, there is a
0.75 probability that it is green.” Note that this
statement is in the same form as the definition
of a null hypothesis: if X, then there is a prob-
ability of Y. You cannot invert this to say, “If
it is green, there is a 0.75 probability that it is
a frog,” because if you find something green
in nature, it is far more probable that it is a
plant or an insect! Inverting the definition is a
logical fallacy called affirming the consequent.
In short, p-values do not tell if the null

hypothesis is true or false, nor do they give a
probability that the null is true.

Smaller p-Values May Not Mean That You
Have Found an Important Pattern

R. A. Fisher (1925) introduced the term “stat-
istically significant” to describe any outcome
that was sufficiently rare to suggest that further
investigationwaswarranted, andhe chose 1/20
(0.05) as sufficiently rare. He did not argue that
there was something intrinsically special about
a 0.05 standard, or that achieving this standard
was noteworthy in any sense other than that it
was unusual enough to suggest further investi-
gation of the pattern. “Statistical significance,”
often shortened to “significance,” was a poor
choice of wording on Fisher’s part, because sig-
nificance to most people implies importance,
and statistically significant results are not neces-
sarily scientifically important ones.
When we think of a finding as important, we

think of one that is substantially different from
what we expected, that is, our null hypothesis.
It could be a correlation coefficient that is much
closer to positive or negative one than the null
hypothesis of zero, or a difference in means
that is much larger than the null expectation
of zero. When “statistically significant” is shor-
tened to “significant,” it is easily misconstrued

as meaning that the result is quite different from
the null expectation. Describing small p-values
as “highly significant” compounds this problem.
I advisemystudents tomentally substitute “non-
zero”when they read the phrase “statistically sig-
nificant” or “significant,” as it clarifies what the
statistical test established and how remarkably
little it tells us.
Although we intuitively anticipate a small

p-valuewhenour results are substantially differ-
ent from the null expectation, small p-values can
just as easily arise because our sample size is
large. A simple example helps demonstrate
this. For example, suppose the adult femur
lengths of two populations of deer differ by a
small amount. This difference is known as effect
size, and it is what wewouldmost like to know.
If we gather a small amount of data, say 25 indi-
viduals from each population, and perform a
t-test on the difference in means, we will prob-
ably obtain a large p-value, that is, a statistically
nonsignificant (>0.05) value (Table 1). This
seems intuitive: the difference in means is
small, and we would expect the p-value to not
be statistically significant.However, ifwe gather
a large amount of data from these same popula-
tions, say 1000 individuals of each, the results of
our t-test now reveal a significant p-value
(Table 2). If we increased the sample size even
more, an even smaller p-value would result,
eventually one so small that one might describe
the outcome ashighlysignificant. Thedifference
in femur lengths hasnot changedat all, the effect
size is the same throughout, and the difference
in means is no more important in the large
data set than the smaller one. The only reason
for the increasingly smaller p-values was the
ever-growing sample size, which eventually
allowed us to detect a tiny departure from the
null hypothesis. Often, statistically significant
results are such small departures from the null
that they are not scientifically important (see
Ranstam [2012] for a good demonstration
using clinical medical trials).
Because p-values are controlled by effect size,

sample size, and variance, simply tagging results
with adjectives like “significant” or “highly sig-
nificant” is misleading. It is not the p-value that
makes the result important (or significant, in
everyday language), it is the effect size (Sullivan
and Feinn 2012). It is not uncommon to find
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statistical results reported as a table of p-values,
with no mention of effect sizes, which com-
pletelyobscureswhatweneed to know to under-
stand whether what has been found is an
important relationship.

Most Significance Tests Serve No Purpose

In most cases, the null hypothesis states that
the effect size is zero, such as a difference in

means of zero or a correlation of zero. Because
p-values are partly controlled by sample size,
it becomes increasingly possible to detect ever-
smaller effect sizes with large-enough data sets.
In other words, given that some nonzero effect
size exists, obtaining a statistically significant
result is only a matter of collecting enough
data. This becomes a greater problem as enor-
mous data sets become available. Modeling
studies are particularly subject to spuriously

TABLE 2. Simple R simulation showing that the difference in the mean adult femur lengths of the same two deer
populations shown in Table 1 are statistically significant when sample size is large. These results are representative;
repeating this process 1 million times indicates that the null will correctly be rejected (i.e., statistical power) 60.9% of the
time at α = 0.05, 36.7% of the time at α = 0.01, and 14.5% of the time at α = 0.001. This small difference in means will be
successfully detected far more often when n = 1000 than when n = 25 (Table 1).

> n <- 1000
> deer1 <- rnorm(n, 295.1)
> deer2 <- rnorm(n, 295.2)
> t.test(deer1, deer2)

Welch Two Sample t-test

data: deer1 and deer2
t = -2.791, df = 1995.3, p-value = 0.005304
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval
-0.21387737 -0.03734957

sample estimates:
mean of x mean of y

295.0647 295.1903

TABLE 1. Simple R simulation showing the statistically nonsignificant difference in the mean adult femur lengths of two
deer populations. These results are representative; repeating this process 1million times indicates that the null will correctly
be rejected (i.e., statistical power) only 6.3% of the time at α = 0.05, 1.4% of the time at α = 0.01, and 0.2% of the time at α =
0.001. Most of the time, such a small difference in means would not be successfully detected at this small sample size.

> n <- 25
> deer1 <- rnorm(n, 295.1)
> deer2 <- rnorm(n, 295.2)
> t.test(deer1, deer2)

Welch Two Sample t-test

data: deer1 and deer2
t = 0.97689, df = 47.123, p-value = 0.3336
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.349309 1.008891

sample estimates:
mean of x mean of y
295.1841 294.8543
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low p-values because the number of replicates
can be set as high as computing time allows
(White et al. 2014).
In many cases, significance testing with a

p-value is the wrong approach, because the
null hypothesis can often be rejected before a
single piece of data is collected. For example,
consider those two populations of deer. If we
reflect on the null hypothesis, that the differ-
ence in mean adult femur lengths is zero, we
know that we should reject the null hypothesis
before we even begin to collect the data (John-
son 1999).
How can we say this? Imagine precisely

measuring every single adult deer femur in
those two populations. Those means are almost
assuredly different; the difference in means
might lie in the fourth or fifth decimal place,
but the probability that those two deer popula-
tions have exactly the same mean adult femur
length is vanishingly small. Gaining a statistic-
ally significant result is only a question of col-
lecting enough data. A statistically insignificant
result most likely indicates only that we have
not collected enough data. The statistical test is
not telling us anything useful, and that is true
for a great many tests. Using MANOVA to test
for differences in community composition or
ANOVA to test for differences among groups
are two common examples.

Confidence Intervals Are More Informative

Our original goal in running statistical tests
was to convince ourselves that the patterns in
the data are real, that they did not arise from
random chance when the null hypothesis is
true. Simply throwing out significance testing
and p-values will not solve our problem,
because it leaves our original goal unsatisfied.
Confidence intervals are one way to address
our original goals while avoiding the problems
of p-values and significance testing (Gardner
and Altman 1986; Yoccoz 1991; Rigby 1999;
Ranstam 2012; Cumming 2014).
I showed earlier how, with enough data, we

could reject the null hypothesis for any effect
size, no matter how small. Many of those
small effect sizes might be biologically unim-
portant for many questions, and whether an
effect size is meaningful will depend on the

particular problem (Houle et al. 2011). For
example, a difference in mean adult femur
length of 0.01 mm is likely to be biologically
unimportant for many questions, but a differ-
ence in speciation rates of 0.01 per lineage
Myr could have a substantial effect. In the
deer example, the null hypothesis addresses
only a difference of 0.0 mm, and it would be
good if we could also test (and reject) all of
those other biologically unimportant hypoth-
eses. Confidence intervals do just that, because
a confidence interval is the set of all acceptable
hypotheses. For example, if we have confidence
limits of 5.7–10.3 mm, we can reject every
hypothesis that lies outside those limits at that
level of confidence. This accomplishes what
our single p-value did, and much more.
When our confidence interval is expressed in

the form of E ± U, it provides us with two use-
ful pieces of information. First, it provides an
estimate of effect size (E), the quantity that
tells us directly how important our result is,
such as how strong the correlation is, what
the slope is between two variables, or what
the difference of means is between two popula-
tions. Second, it provides an estimate of uncer-
tainty (U) in our results, one that allows us to
test not only an often manifestly false null
hypothesis but also a large set of alternative
hypotheses. This estimate and uncertainty can
be used in subsequent models, allowing us to
propagate our understanding (effect size) and
our uncertainty forward through other studies.
Confidence intervals decrease with sample
size, reflecting our greater certainty in our esti-
mate as we collect more data.
Bayesian credible intervals perform a similar

function of providing an estimate and an uncer-
tainty. For many types of problems, Bayesian
credible intervals and frequentist confidence
intervals give comparable results (Bolker 2008;
Wang 2010).

Significance Tests May Ask the Wrong
Question

After Eldredge and Gould (1972) introduced
their hypothesis of punctuated equilibria, paleo-
biologists undertook a concerted effort at docu-
menting patterns of morphological evolution,
especially testing the existence of stasis in the

STEVEN M. HOLLAND4

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/pab.2018.43
Downloaded from https://www.cambridge.org/core. University of Georgia Libraries, on 18 Mar 2019 at 13:00:30, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/pab.2018.43
https://www.cambridge.org/core


geological record. It was soon realized that
morphology might appear to show directional
change over time, even though morphology
was undergoing only a random walk (Raup
1977; Raup and Crick 1981). It was soon rea-
lized that statistically rejecting a random walk
was exceptionally difficult (Bookstein 1987;
Sheets and Mitchell 2001).
Progress on this question was hindered until

it was realized that testing a single hypothesis,
the null, was thewrong approach, that the ques-
tion should not bewhether a null can be rejected,
but whichmodel of evolution (random drift, dir-
ectional, punctuated, etc.) was best supported
by the data. Applying likelihood-based model
selection to a wide variety of taxa, Gene Hunt
(2007) showed that random walks and stasis in
morphologywere equally frequent, and that dir-
ectional changewas far less common. Expanding
on this approach, Hunt (2008) used likelihood-
based model selection to distinguish between
gradual and pulsed evolution and to estimate
the underlying parameters that describe themor-
phological history. The advantage of using infor-
mation criteria in these types of studies is that
they incorporate penalties for more complicated
models, making it difficult to overfit the data
with a too-complicated model and thereby
appealing to Occam’s razor. Model selection
achieves a similar end as estimation, in that
the goal is not to test a single hypothesis (the
null), but to evaluate a range of hypotheses to
understand which is best supported by the
data. It is also important to bear in mind that
a selected model may not fit the data well,
and that models not considered may fit the
data considerably better (Pennell et al. 2015;
Voje et al. 2018).

A Path Forward

Fortunately, it is straightforward to move
beyond significance testing and p-values. Most
simple tests in R (R Core Team 2018), such as
those for proportions, means, variance, correl-
ation, and regression, automatically report con-
fidence intervals. Adopting them is only a
matter of reporting a different line in the out-
put. Bayesian credible intervals have been
more difficult to calculate, and their methods
less standardized, but that situation is steadily

improving. Methods of model selection are
also less standardized, but a growing number
of implementations make the barrier to incorp-
orating them ever lower.
Instead of performing significance tests, we

should estimate parameters and the uncer-
tainty in those estimates. Rather than aiming
for small p-values, our goal should be effect
sizes that show that we have identified import-
ant relationships, along with uncertainties
reduced through larger sample sizes.
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