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Statistical Table O, based on the method of Tate and Klett (1959). With the help
of Table O, which gives (n — 1)/x2,_;, Where p is an adjusted value of a/2 or
1 — a/2 designed to yield the shortest unbiased confidence intervals, the com-
putation is very simple and much faster than calculating confidence limits by
means of 2.

Similar shortest unbiased confidence limits can be found for binomial param-
eters p and for the mean A of a Poisson variable. Box 7.4 shows the simple
computation by means of tables based on methods described in Crow (1956) and
Crow and Gardner (1959).

1.8 INTRODUCTION TO HYPOTHESIS TESTING

The most frequent application of statistics in biological research is to test a
hypothesis. Statistical methods are important in biology because results of ex-
periments are usually not clear-cut and therefore need statistical tests to support
decisions between alternative hypotheses. A statistical test examines a set of
sample data and, on the basis of an expected distribution of the data, leads to a
decision about whether to accept the hypothesis underlying the expected distri-
bution or reject that hypothesis and accept an alternative one. The nature of the
tests varies with the data and the hypothesis, but the same general philosophy of
hypothesis testing is common to all tests. Study the material in this section very
carefully because it is fundamental to an understanding of every subsequent
chapter in this book!

Let us consider again the sample of 17 animals of species A, 14 of which were
females and 3 of which were males, which we discussed in Section 5.2. If our
question is whether this litter could have come from a population with a true sex
ratio of 1:1, we can visualize the following experiment. First we must create an
infinitely sized population, half of whose members are females, the other half
males. From this we can now repeatedly sample litters of 17 animals and exam-
ine how often we obtain a result of 14 females and 3 males. Since assembling an
infinite population is impossible, we accomplish the same result with a finite
population by sampling with replacement. This approach to hypothesis testing
through randomization, almost always carried out by computer, is very common
today, and, as we will see in Chapter 18, is the preferred approach in many cases.

In the example with the litter of 17 animals, however, we can simplify our task
by relying on probability theory, using what we learned about the binomial
distribution in Chapter 5. Assuming that the litter was sampled at random from a
binomially distributed population, we concluded from Table 5.3 that if the sex -
ratio in the population was 1:1 (py = g5 = 0.5), the probability of obtaining a
sample with 14 females and 3 males is 0.005188, making it very unlikely that
such a result could be obtained by chance alone. We learned that it is conven-
tional to include all ‘‘worse’’ outcomes—that is, all those that deviate even
more from the outcome expected on the hypothesis po = g5 = 0.5. Including all
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worse outcomes, the probability is 0.006363, still a very small value. This com-
putation is based on the one-tailed test, in which we are interested only in depar-
tures from the 1: 1 sex ratio that show a preponderance of females. If we have no
preconception about the direction of the departures from expectation, we must
calculate the probability of obtaining a sample as deviant as 14 females and 3
males in either direction from expectation—that is, the probability either of
obtaining a sample of 3 females and 14 males (and all worse samples) or of
obtaining 14 females and 3 males (and all worse samples). Such a test is two-
tailed, and since the distribution is symmetrical, we can simply double the previ-
ously discussed probability to yield 0.012726.

What does this probability mean? Our hypothesis is that p, = g5 = 0.5. Let
us call this hypothesis H,, the null hypothesis, which is the hypothesis under
test. It is called the null hypothesis because it states that there is no real differ-
ence between the true value of p in the population from which we sampled and
the hypothesized value of p = 0.5. For instance, in the current example we
believe that our sample does not exhibit a 1: 1 sex ratio only because of sampling
error. As stated earlier, this probability was computed on the assumptions that
the litter was sampled at random, that the population of samples is binomially
distributed, and that p = 0.5. In singling out the last assumption as the null
hypothesis and considering it to be improbable in view of the outcome of the
experiment, we are implicitly expressing our confidence in the validity of the
other two assumptions. If the litter was not sampled at random and/or the data
were not binomially distributed, the probability of obtaining the observed out-
come would be seriously in error. When carrying out a statistical test, we usually
make several assumptions associated with the test. The investigator chooses
which of these to make the null hypothesis and which others to consider valid
assumptions.

If the null hypothesis p, = g; = 0.5 is true, then approximately 13 samples
out of 1000 will be as deviant or more deviant than this one in either direction by
chance alone. Thus, it is quite possible to have arrived at a sample of 14 females
and 3 males or 14 males and 3 females by chance, but it is not very probable,
since so deviant an event would occur only about 13 out of 1000 times, or 1.3%
of the time. If we actually obtain such a sample, we may make one of two
decisions: that the null hypothesis is true (that is, the sex ratio is 1: 1) and that the
sample obtained by us just happened to be one of those in the tail of the distribu-
tion, or that so deviant a sample is too improbable an event to justify acceptance
of the null hypothesis—that is, that the hypothesis about the sex ratio being 1:1
is not true.

Either of these decisions may be correct, depending upon the truth of the
matter. If the 1:1 hypothesis is correct, then the first decision (to accept the null
hypothesis) will be correct. If we decide to reject the hypothesis under these
circumstances, we commit an error. The rejection of a true null hypothesis is
called a type I error. On the other hand, if the true sex ratio of the population is
other than 1:1, the first decision (to accept the 1:1 hypothesis) is an error, a
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so-called type II error, which is the acceptance of a false null hypothesis.
Finally, if the 1 : 1 hypothesis is not true and we do decide to reject it, then again
we make the correct decision. Thus, there are two kinds of correct decisions,
accepting a true null hypothesis and rejecting a false null hypothesis, and two
kinds of errors, type I, rejecting a true null hypothesis, and type II, accepting a
false null hypothesis. The relationships between hypotheses and decisions can be
summarized as follows:

Null hypothesis
Accepted Rejected
. True Correct decision Type I error
Null hypoth
u Aypothests False Type II error Correct decision

Before we carry out a test, we have to decide what magnitude of type I error
(rejection of true hypothesis) we will allow. There will always be some samples
that by chance are very deviant. The most deviant of these are likely to mislead
us into believing the null hypothesis to be untrue. If we permit 5% of samples to
lead us into a type I error, then we will reject 5 out of 100 samples from the
population, deciding that these are not samples from the given population. In the
distribution under study, this means that we would reject all samples of 17
animals containing 13 of one sex and 4 of the other sex, as you can see by
referring to column (3) of Table 7.2, where the expected frequencies of the
outcomes on the hypothesis p, = g5 = 0.5 are shown. This table is an extension
of Table 5.3, which showed only a tail of the distribution. Actually, you would
obtain a type I error slightly less than 5% if you summed relative expected
frequencies for both tails starting with the class of 13 of one sex and 4 of the
other. Summing the frequencies in Table 7.2, the relative expected frequency in
the two tails is 2 X 0.024,520,9 = 0.049,041,8. In a discrete frequency distribu-
tion, such as the binomial, we cannot calculate errors of exactly 5% as we can in
a continuous frequency distribution, where we can measure off exactly 5% of the
area. If we decide on an approximate 1% error, we reject the hypothesis po = g4
for all samples of 17 animals having 14 or more of one sex (from Table 7.2 we
find that the f;el in the tails sum to 2 X 0.006,362,9 = 0.012,725,8). Thus, the
smaller the type I error we are prepared to accept, the more deviant a sample has
to be for us to reject the null hypothesis H,. Your natural inclination might be to
have as little error as possible. You may decide to work with an extremely small
type I error, such as 0.1% or even 0.01%, accepting the null hypothesis unless the
sample is extremely deviant. The difficulty with such an approach is that al-
though guarding against an error of the first kind, you might be falling into an
error of the second kind (type II), accepting the null hypothesis when in fact it is
not true and an alternative hypothesis H, is true. We will show later in the
discussion how this comes about.
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Table 1.2 RELATIVE EXPECTED FREQUENCIES FOR SAMPLES OF
lable LL |7 ANIMALS UNDER TWO HYPOTHESES.

Binomial distribution.

n @ 3) )
Hy:po= qu% H15P,2—2q(r—%

2 343 rel rel
17 0 0.000,007,6 0.001,015,0
16 1 0.000,129,7 0.008,627,2
15 2 0.001,037,6 0.034,508,6
14 3 0.005,188,0 0.086,271,5
13 4 0.018,158,0 0.150,975,2
12 5 0.047,210,7 0.196,267,7
11 6 0.094,421,4 0.196,267,7
10 7 0.148,376,5 0.154,2104
9 8 0.185,470,6 0.096,381.5
8 9 0.185,470,6 0.048,190,7
7 10 0.148,376,5 0.019,276,3
6 11 0.094,421.4 0.006,133,4
5 12 0.047,210,7 0.001,533,3
4 13 0.018,158,0 0.000,294,9
3 14 0.005,188,0 0.000,042,1
2 15 0.001,037,6 0.000,004,2
1 16 0.000,129,7 0.000,000,2
0 17 0.000,007,6 0.000,000,0
Total 1.000,000,2 0.999,999.9

First let us learn some more terminology. A type I error is most frequently
expressed as a probability and is symbolized by o. When expressed as a percent-
age it is known as the significance level. Thus a type I error of « = 0.05 corre-
sponds to a significance level of 5% for a given test. When we cut off areas
proportional to , the type I error, on a frequency distribution, the portion of the
abscissa under the area that has been cut off is called the rejection region, or
critical region, of a test, and the portion of the abscissa that would lead to
acceptance of the null hypothesis is called the acceptance region. Figure 7.14A
is a bar diagram showing the expected distribution of outcomes in the sex ratio
example, given H,. The dashed lines separate approximate 1% rejection regions
from the 99% acceptance region.

Now let us take a closer look at the type II error, the probability of accepting
the null hypothesis when it is false. If you try to evaluate the probability of a type
11 error, you immediately run into a problem. If the null hypothesis H, is false,



7.8 INTRODUCTION TO HYPOTHESIS TESTING IGI

A Critical or Critical or
rejection rejection
~region-~—— Acceptance region ——+—region —
- _ o
027 2 | l-a T2
| Il |
_0.15F | ‘
S | |
0.1 [ | |
I I
0.05 { I
0 alll H H Ol
01 2 |4 56 78 910111213[14151617
Number of females in samples of 17 animals
| |
| |
B | |
- B 1 - B
02 { AN
|
015t | 1 il
ftel | I
0.1 : I
| |
0.05[- | I
|
0 ‘ ﬂ H | H n

01 2 3|4 5 7 8 0111213]14151617
Number of females in samples of 17 animals

FIGURE 7.14 Expected distributions of outcomes when sampling 17 animals from
two hypothetical populations. A. Hy:p? = q3 = 4. B. H,:p®? = 213 = 3. Dashed
lines separate rejection, or critical, regions from the acceptance region of the distribu-
tion of A. Type I error a equals approximately 0.01.

some other hypothesis H, must be true. But unless you can specify H;, you are
not in a position to calculate a type II error. Consider the following example.
Suppose in our sex ratio case we have only two reasonable possibilities—(1) our
old hypothesis Hy:po = g3, or (2) an alternative hypothesis H,:po = 295,
which states that the sex ratio is 2: 1 in favor of females, so po = 3 and g5 = 3.
We now have to calculate expected frequencies for the binomial distribution
(pe + gs)¥ = G + H to find the probabilities of the outcomes under this hy-
pothesis. These frequencies are shown graphically in Figure 7.14B and are tabu-
lated and compared with expected frequencies of the earlier distribution in Table
7.2.

Suppose we had decided on a type I error of a ~ 0.01, as shown in Figure
7.14A. At this significance level we would accept the H, for all samples of 17
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having 13 or fewer animals of one sex. Approximately 99% of all samples will
fall into this category. However, what if H, is not true and H, is true? Clearly,
from the population represented by hypothesis H,, we could also obtain out-
comes in which one sex was represented 13 or fewer times in samples of 17. We
have to calculate what proportion of the curve representing hypothesis H; will
overlap the acceptance region of the distribution representing hypothesis H,. In
this case we find that 0.8695 of the distribution representing H, overlaps the
acceptance region of H, (see Figure 7.14B). Thus, if H, is really true (and H,
correspondingly false), we would erroneously accept the null hypothesis 86.95%
of the time. This percentage corresponds to the proportion of samples from H,
that fall within the limits of the acceptance regions of H,. This proportion is
called B, the type II error expressed as a proportion. In this example B is quite
large. A sample of 17 animals is clearly unsatisfactory to discriminate between
the two hypotheses. Although 99% of the samples under H, would fall in the
acceptance region, 87% would do so under H, . A single sample that falls in the
acceptance region would not enable us to reach a decision between the hypothe-
ses with a high degree of reliability. If the sample had 14 or more females, we
would conclude that H, was correct. If it had 3 or fewer females we might
conclude that neither H, nor H, was true. As H, approaches H, (asin H,:po =
0.55, for example), the two distributions would overlap more and more and the
magnitude of B would increase, making discrimination between the hypotheses
even less likely. Conversely, if H, represented p, = 0.9, the distributions would
be much farther apart and type II error 8 would be reduced. Clearly, then, the
magnitude of 8 depends, among other things, on the parameters of the alternative
hypothesis H, and cannot be specified without knowledge of these parameters.

When the alternative hypothesis is fixed, as in the previous example
(H,:p. = 2q5), the magnitude of the type I error o we are prepared to tolerate
will determine the magnitude of the type II error B. The smaller the rejection
region « in the distribution under Hy, the greater the acceptance region 1 — a/in
this distribution. The greater 1 — @, however, the greater its overlap with the
distribution representing H,, and hence the greater 8. Convince yourself of this
in Figure 7.14. By moving the dashed lines outward we are reducing the critical
regions representing type I error « in diagram A. But as the dashed lines move
outward, more of the distribution of H; in diagram B will lie in the acceptance
region of the null hypothesis. Thus, by decreasing « we are increasing 8 and in a
sense defeating our own purposes.

In most applications, scientists want to keep both of these errors small, since
they do not wish to reject a null hypothesis when it is true, nor do they wish to
accept it when another hypothesis is correct. We will see what steps can be taken
to decrease 3 while holding « constant at a preset level. Note, however, that there
are special applications, often nonscientific, in which one type of error is less
serious than the other, and our strategy of testing or method of procedure would
obviously take this into account. Thus, if you were a manufacturer producing a
certain item according to specifications (which correspond to the null hypothesis
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in this case), you would wish to maximize your profits and to reject as few as
possible, which is equivalent to making « small. That is why in industrial statis-
tics a is known as producers’ risk. You might not be as concerned with samples
that come from a population specified by the alternative hypothesis H; but that
appear to conform with H, because they fall within its acceptance range. Such
products could conceivably be marketed as conforming to specification H,. On
the other hand, as a consumer you would not mind so much a large value of a,
representing a large proportion of rejects in the manufacturing process. You
would, however, be greatly concerned about keeping B8 as small as possible,
since you would not wish to accept items as conforming to H,, which in reality
were samples from the population specified by H, that might be of inferior
quality. For this reason § is known in industrial statistics as consumers’ risk.

Let us summarize what we have learned up to this point. When we have to
carry out a statistical test, we first specify a null hypothesis H, and establish a
significance level that corresponds to a probability of « for a type I error. In the
case of the sex ratios, we defined H,:p, = ¢ and @ =~ 0.01. Having done this,
we take a sample and test whether the sample statistic is within the acceptance
region of the null hypothesis. Our sample turned out to be 14 females and 3
males. Since this sample statistic falls beyond the acceptance region, we reject
the null hypothesis and conclude that this sample came from a population in
which py # g5

If we can specify an alternative hypothesis, we can calculate the probability of
type II error. In this case H,:p; = 2g4 and B = 0.8634. This is the probability
of accepting the null hypothesis when, in fact, the alternative hypothesis is true.
In certain special situations in which the alternative hypotheses can be clearly
specified, as in genetics and in this example, one might then test the previous
alternative hypothesis, changing it into the null hypothesis. Thus, we might now
wish to test whether the true sex ratio is 2 ¢ : 15 . From Figure 7.14B it is obvious
that the probability of 14 males and 3 females is very small and can be ignored.
The probability of obtaining 14 or more females under the new null hypothesis is
1 — Bof the old alternative hypothesis, as illustrated in Figure 7.14B. Hence this
probability would be 0.1366 and, if we accept o = 0.05, we cannot reject the
new null hypothesis.

Significance levels can be varied at will by the investigator. The choices are
limited, however, because for many tests cumulative probabilities of the appro-
priate distributions have not been tabulated. One must use published probability
levels, which are commonly 0.05, 0.01, and 0.001, although several others are
occasionally encountered. When a null hypothesis has been rejected at a speci-
fied level of «, we say that the sample is significantly different from the para-
metric or hypothetical population at probability P < a. Generally, values of «
greater than 0.05 are not considered to be statistically significant. A signifi-
cance level of 5% (P = 0.05) corresponds to one type I error in 20 trials, a level
of 1% (P = 0.01) to one error in 100 trials. Significance levels less than 1%
(P < 0.01) are nearly always adjudged significant; those between 5% and 1%
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may be considered significant at the discretion of the investigator. Since statisti-
cal significance has a special technical meaning (H, rejected at P = «), we shall
use the adjective significant only in this sense; its use in scientific papers and
reports, unless such a technical meaning is clearly implied, should be discour-
aged. For general descriptive purposes synonyms such as important, meaningful,
marked, noticeable, and others can serve to underscore differences and effects.

A brief remark on null hypotheses represented by asymmetrical probability
distributions is in order here. Suppose our null hypothesis in the sex ratio case
had been Hy:p, = %, as discussed above. The distribution of samples of 17
offspring from such a population is shown in Figure 7.14B. Because this distri-
bution is clearly asymmetrical, the critical regions have to be defined indepen-
dently. For a given two-tailed test we can either double the probability P of a
deviation in the direction of the closer tail and compare 2P with «, the conven-
tional level of significance; or we can compare P with /2, half the conventional
level of significance. In the latter case, 0.025 is the maximal value of P conven-
tionally considered significant.

We review now what we have learned by means of a second example, this
time involving a continuous frequency distribution—the normally distributed
housefly wing lengths from Table 6.1 —of parametric mean pu = 45.5 and var-
iance 02 = 15.21. Means based on 5 items sampled from these are also distrib-
uted normally (see Figure 7.1). Assume that someone presents you with a single
sample of 5 housefly wing lengths and you wish to test whether it could have
come from the specified population. Your null hypothesis will be Hy: u = 45.5
or Hy: w = wy, where u is the true mean of the population from which you
sampled and u, stands for the hypothetical parametric mean of 45.5. Assume for
the moment that we have no evidence that the variance of our sample is very
much greater or smaller than the parametric variance of the housefly wing
lengths. (If it were, it would be unreasonable to assume that our sample comes
from the specified population. There is a critical test of the assumption about the
sample variance, which we will discuss later.) The curve at the center of Figure
7.15 represents the expected distribution of means of samples of 5 housefly wing
lengths from the specified population. Acceptance and rejection regions for a
type I error a = 0.05 are delimited along the abscissa. The boundaries of the
rejection regions are computed as follows (remember that f,.; is equivalent to the
normal distribution):

Ly = py — tosi07 = 45.5 — (1.96)(1.744) = 42.08
and
Ly = o + tosp07 = 45.5 + (1.96)(1.744) = 48.92

Thus we would consider it improbable for means less than 42.08 or greater than
48.92 to have been sampled from this population. For such sample means, we
would therefore reject the null hypothesis. The test we are proposing is two-
tailed because we have no a priori assumption about the possible alternatives to
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H :p =37 Hy:p =455 H :p=54

Wing length (in units of 0.1 mm)

FIGURE 7.15 Expected distribution of means of samples of 5 housefly wing lengths
from normal populations specified by p as shown above curves and oy = 1.744.
Center curve represents null hypothesis, Hy: . = 45.5, curves at sides represent alter-
native hypotheses, . = 37 or u = 54. Vertical lines delimit 5% rejection regions for
the null hypothesis (23% in each tail, shaded).

our null hypothesis. If we could assume that the true mean of the population from
which the sample was taken could be only equal to or greater than 45.5, the test
would be one-tailed.

Now let us examine alternative hypotheses. One alternative hypothesis might
be that the true mean of the population from which our sample stems is 54.0, but
that the variance is the same as before. We can express this assumption as
H,:p =540 or H:u = pu,, where u, stands for the alternative parametric
mean 54.0. From the table of the areas of the normal curve (Table A) and our
knowledge of the variance of the means, we can calculate the proportion of the
distribution implied by H, that would overlap the acceptance region implied by
H,. We find that 54.0 is 5.08 measurement units from 48.92, the upper boundary
of the acceptance region of H,. This corresponds to 5.08/1.744 = 2.9107 units.
From Statistical Table A we find that 0.0018 of the area will lie beyond 2.91¢ at
one tail of the curve. Thus under this alternative hypothesis 0.0018 of the distri-
bution of H, will overlap the acceptance region of H,. This is 3, the type II error
under this alternative hypothesis. Actually this is not entirely correct. Since the
left tail of the H, distribution goes all the way to negative infinity, it will leave
the acceptance region and cross over into the left-hand rejection region of H.
However, this represents only an infinitesimal amount of the area of H, (the
lower critical boundary of H,, 42.08, is 6.8307 units from w, = 54.0; the area is
less than 1 X 107°) and can be ignored.

Our alternative hypothesis H, specified that u, is 8.5 units greater than w,. As
we said, however, we may have no a priori reason to believe that the true mean
of our sample is either greater or less than u. Therefore we may simply assume
that the true mean is 8.5 measurement units away from 45.5. In such a case we
must similarly calculate B for the alternative hypothesis: u; = o — 8.5. Thus
the alternative hypothesis becomes H, : u = 54.0 or 37.0, or H,: u = p,, where
w, represents either 54.0 or 37.0, the alternative parametric means. Since the
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distributions are symmetrical, 8 is the same for both alternative hypotheses.
Type II error for hypothesis H, is therefore 0.0018, regardless of which of the
two alternative hypotheses is correct. If H, is really true, 18 out of 10,000 sam-
ples would lead to an incorrect acceptance of H,, a very low proportion of error.
These relations are shown in Figure 7.15.

You may rightly ask what reason we have to believe that the alternative
parametric value for the mean is 8.5 measurement units to either side of w, =
45.5. Any justification for such a belief would be quite unusual. As a matter of

= 54
|
58
B = 0.0096 o= 353
B = 0.0694

B, = 51.5

B = 50
w, = 48.5

| ! i I |

40 42 44 46 48 50 52 54 56 58
Wing length (in units of 0.1 mm)

FIGURE 7.16 Diagram to illustrate increases in type Il error, B3, as alternative hy-
pothesis, H,, approaches null hypothesis, Hy—that is, v, approaches . Shading rep-
resents B. Vertical lines mark off 5% critical regions (2% in each tail) for the null hy-
pothesis. To simplify the graph, the alternative distributions are shown for one tail
only. Data identical to those in Figure 7.15.
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fact, the true mean may just as well be 7.5 or 6.0 or any number of units to either
side of u,. If we draw curves for H;: u = w, £ 7.5, we find that 8 has increased
considerably, since the curves for H, and H, are now closer together. Thus the
magnitude of 8 depends on how far the alternative parametric mean is from the
parametric mean of the null hypothesis. As the alternative mean approaches the
parametric mean, 3 increases to a maximum value of 1 — «, which is the area of
the acceptance region under the null hypothesis. At this maximum the two distri-
butions would be superimposed upon each other. Figure 7.16 illustrates the
increase in 3 as u, approaches u, starting with the test illustrated in Figure 7.15.
To simplify the graph, the alternative distributions are shown for one tail only.
Thus we see clearly that 3 is not a fixed value but varies with the nature of the
alternative hypothesis.

An important concept in connection with hypothesis testing is the power of a
test. The power is 1 — f3, the complement of 3, and is the probability of rejecting
the null hypothesis when it is false and the alternative hypothesis is correct. For
any given test, we would like to have the quantity 1 — B be as large as possible
and the quantity 8 as small as possible. Since we generally cannot specify a
given alternative hypothesis, we have to describe 8 or 1 — B for a continuum of
alternative values. When 1 — S is graphed in this manner the result is called a
power curve for the test under consideration. Figure 7.17 shows the power curve
for the housefly wing length example just discussed. This figure can be com-
pared with Figure 7.16, from which it is directly derived.

Figure 7.16 emphasizes the type II error 3, and Figure 7.17 graphs the com-
plement of this value, 1 — . Note that the power of the test falls off sharply as
the alternative hypothesis approaches the null hypothesis. Common sense con-
firms these conclusions: We can make clear and firm decisions about whether
our sample comes from a population of mean 45.5 or 60.0. The power is essen-
tially 1. But if the alternative hypothesis is that u; = 45.6, differing only by 0.1
from the value assumed under the null hypothesis, deciding which of these
hypotheses is true is difficult and the power will be very low.

1.0

0.5

Power (1 — B)

Wing length (in units of 0.1 mm)

FIGURE 7.17 Power curves for testing Hy: u = 45.5. Hijpu # 45.5 forn = 5 (as in
Figures 7.15 and 7.16) and for n = 35.
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To improve the power of a given test (that is, decrease ) while keeping o
constant for a stated null hypothesis, we must increase sample size. If, instead of
sampling 5 wing lengths we had sampled 35, the distribution of means would be
much narrower. Thus rejection regions for the identical type I error would now
commence at 44.21 and 46.79. Although the acceptance and rejection regions
would remain the same proportionately, the acceptance region would become
much narrower in absolute value. Previously we could not, with confidence,
reject the null hypothesis for a sample mean of 48.0. Now, when based on 35
individuals, a mean as deviant as 48.0 would occur only 15 times out of 100,000
and the hypothesis would, therefore, be rejected.

What has happened to type Il error? Since the distribution curves are not as
wide as before, they overlap less. If the alternative hypothesis H,: u = 54.0 or
37.0 s true, the probability that the null hypothesis could be accepted by mistake
(type II error) is infinitesimally small. If we let w, approach w,, 8 will increase,
of course, but it will always be smaller than the corresponding value for sample
size n = 5. This comparison is shown in Figure 7.17, where the power for the
test with # = 35 is much higher than that for n = 5. If we were to increase our
sample size to 100 or 1000, the power would be increased still further. Thus we
reach an important conclusion: If a given test is not sensitive enough, we can
increase its sensitivity (= power) by increasing sample size.

There is yet another way of increasing the power of a test. If we cannot
increase sample size, we may increase the power by changing the nature of the
test. Different statistical techniques testing roughly the same hypothesis may
differ substantially in both the magnitude and the slopes of their power curves.
Tests that maintain higher power levels over substantial ranges of alternative
hypotheses are clearly to be preferred. The popularity of the nonparametric tests
mentioned in several places in this book has grown not only because of their
computational simplicity but in many cases also because their power curves are
less affected by failure of assumptions than are those of the parametric methods.
Nonparametric tests, however, have lower overall power than do parametric
ones, when all the assumptions of the parametric test are met.

While on the subject of different tests we should discuss briefly the size of a
test. When we follow the protocols of a given statistical test and decide on a
specified type 1 error a, the correctness of that value depends on how sensitive
the test is to departures from its assumptions in the sample analyzed. The in-
tended type I error rate may be only nominal, and the actual error rate—termed,
somewhat infelicitously, the size of the test—may be greater or smaller. In the
former case we speak of a liberal test (i.e., we reject the null hypothesis more
often than we should), the latter case represents a conservative test (i.e., we
reject the null hypothesis less often).

Let us look briefly at a one-tailed test. The null hypothesis is Hy: w, = 45.5 as
before. The alternative hypothesis, however, assumes that we have reason to
believe that the parametric mean of the population from which our sample has
been taken cannot be less than u, = 45.5. If it is different from that value, it can
be only greater than 45.5. We might have two grounds for such an hypothesis.
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FIGURE 7.18 One-tailed significance test for the distribution of Figure 7.15. The
vertical line now cuts off 5% rejection region from one tail of the distribution (shaded
area).

First, we might have a biological reason for such a belief. For example, our
parametric flies might be a dwarf population, making any other population from
which our sample could have come necessarily bigger. A second reason might be
that we are interested in only one direction of difference. For example, we may
be testing the effect of a chemical in the larval food intended to increase the size
of the sample of flies. Therefore, we would expect that u, = u,, and we are not
interested in testing for any u, that is less than w, because such an effect is the
opposite of what we anticipate. Similarly, if we are investigating the effect of a
certain drug as a cure for cancer, we might wish to compare the untreated popu-
lation that has a mean fatality rate 6 (from cancer) with the treated population,
whose rate is 6,. Our alternative hypotheses would be H,: 6, < 6. That is, we
would not be interested in any 6, that is greater than 6 because if our drug
increases mortality from cancer, it certainly is not much of a prospect for a cure.

When such a one-tailed test is performed, the rejection region along the ab-
scissa is only under one tail of the curve representing the null hypothesis. Thus,
for our housefly data (distribution of means of sample size n = 5) the rejection
region will be in one tail of the curve only and for a 5% type I error will appear as
shown in Figure 7.18. We compute the critical boundary as 45.5 +
(1.645)(1.744) = 48.37. (The 1.645 is ¢ |4, Which corresponds to the 5% value
for a one-tailed test.) Compare this rejection region, which rejects the null hy-
pothesis for all means greater than 48.37, with the two rejection regions in Figure
7.16, which reject the null hypothesis for means lower than 42.08 and greater
than 48.92. In Figure 7.18 the alternative hypothesis is considered for one tail of
the distribution only, and the power curve of the test is not symmetrical but is
drawn with respect to only one side of the distribution.

1.9 TESTS OF SIMPLE HYPOTHESES
USING THE NORMAL AND Z-DISTRIBUTIONS

We will now apply our new knowledge of hypothesis testing to some simple
examples involving the normal and ¢-distributions.



