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Introduction
Cluster analysis includes a broad suite of techniques designed to find groups of similar items 
within a data set. Partitioning methods (e.g., k-means clustering) divide the data set into a 
number of groups predesignated by the user. Hierarchical cluster methods produce a 
hierarchy of clusters from small clusters of very similar items to large clusters that include 
more dissimilar items. Hierarchical methods usually produce a graphical output known as a 
dendrogram or tree that shows this hierarchical clustering structure. Some hierarchical 
methods are divisive, that progressively divide the one large cluster comprising all of the data 
into two smaller clusters and repeat this process until all clusters have been divided. Other 
hierarchical methods are agglomerative and work in the opposite direction by first finding the 
clusters of the most similar items and progressively adding less similar items until all items 
have been included into a single large cluster. Cluster analysis can be run in the Q-mode in 
which clusters of samples are sought or in the R-mode, where clusters of variables are desired.

Hierarchical methods are particularly useful in that they are not limited to a pre-determined 
number of clusters and can display similarity of samples across a wide range of scales. 
Agglomerative hierarchical methods are common in the natural sciences and they are the 
focus of this guide.

Computation
As with other multivariate methods, the starting point is a data matrix consisting of n rows of 
samples and p columns of variables, called an n x p (said “n by p”) matrix. Hierarchical 
agglomerative cluster analysis begins by calculating a matrix of distances among items in this 
data matrix. Although cluster analysis can be run in the R-mode when seeking relationships 
among variables, this discussion will assume that a Q-mode analysis is being run. In Q-mode 
analysis, the distance matrix is a square, symmetric matrix of size n x n that expresses all 
possible pairwise distances among samples. Many distance metrics can be used.

Before clustering has begun, each sample is considered a group, albeit of a single sample. 
Clustering begins by finding the two groups that are most similar, based on the distance 
matrix, and merging them into a single group. The characteristics of this new group are based 
on a combination of all the samples in that group. This procedure of combining two groups 
and merging their characteristics is repeated until all the samples have been joined into a 
single large cluster.

A variety of distance metrics can be used to calculate similarity. For data that show linear 
relationships, euclidean distance is a useful measure of distance. For data that show modal 
relationships, such as ecological data, the Bray (Sørenson) distance is a better descriptor of 
similarity because it considers only those taxa that occur in at least one of the samples.

A variety of linkage methods can be used to determine in what order clusters may join. The 
nearest neighbor or single linkage method is based on the elements of two clusters that are 
most similar, whereas the farthest neighbor or complete linkage method is based on the 
elements that are most dissimilar. Both of these are based on outliers of distributions, which 
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may not be desirable. The median, group average, and centroid methods all emphasize the 
central tendency of clusters and are less sensitive to outliers. Group average may be 
unweighted (also known as UPGMA) or weighted (WPGMA). Ward’s method joins clusters 
based on minimizing the within-group sum of squares, and it tends to produce compact 
clusters.

Interpretation of Dendrograms
The results of the cluster analysis are shown by a dendrogram, which lists all of the samples 
and indicates at what level of similarity any two clusters were joined. The x-axis is some 
measure of the similarity or distance at which clusters join and different programs use 
different measures on this axis. 

In the dendrogram shown above, samples 1 and 2 are the most similar and join to form the 
first cluster, followed by samples 3 and 4. The last two clusters to form are 1-2-3-4 and 
5-9-6-7-8-10. Clusters may join pairwise, such as the joining of 1-2 and 3- 4. Alternatively, 
individual samples may be sequentially added to an existing cluster, such as the join of 6 with 
5-9, followed by the join of 7, known as chaining.

Determining the number of groups in a cluster analysis is often the primary goal. Although 
objective methods have been proposed, their application is somewhat arbitrary. Typically, one 
looks for natural groupings defined by long stems, such as the one to the right of cluster 1-2-3- 
4 (above). Some have suggested that all clusters be defined at a consistent level of similarity, 
such that one would draw a line at some chosen level of similarity and all stems that intersect 
that line would indicate a group. The strength of clustering is indicated by the level of 
similarity at which elements join a cluster. In the example above, elements 1-2-3-4 join at 
similar levels, as do elements 5-9-6-7-8-10, suggesting the presence of two major clusters in 
this analysis. 
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In contrast, the dendrogram above displays more chaining, clustering at a wider variety of 
levels, and a lack of long stems, suggesting that there are no discrete clusters within the data. 
Defining groups involves a tradeoff between the number of groups and the similarity of 
elements in the group. If many groups are defined, they will be small in size and their 
elements will be highly similar, but the analysis of a great many groups can be difficult. If 
fewer groups are defined, their larger number of elements will show less similarity to one 
another, but the smaller number of groups will be easier to analyze.

Dendrograms are like mobiles and can be freely rotated around any node. In the example 
above, the dendrogram could be spun such that the samples appeared in a different order, 
shown below, with the constraint that the dendrogram does not cross itself. Such spinning of 
a dendrogram is a useful way to accentuate patterns of chaining or the distinctiveness of 
clusters (although it doesn’t aid in this case). For many cluster analysis programs, spinning 
must be done (tediously) in a separate graphics program, such as Illustrator, but spinning can 
also be done in R.

Considerations
Because of its agglomerative nature, clusters are sensitive to the order in which samples join, 
which can cause samples to join a grouping to which it does not actually belong. In other 
words, if groups are known beforehand, those same groupings may not be produced from 
cluster analysis.

Cluster analysis is sensitive to both the distance metric selected and the criterion for 
determining the order of clustering. Different approaches may yield different results. 
Consequently, the distance metric and clustering criterion should be chosen carefully. The 
results should be compared to analyses based on different metrics and clustering criteria, and 
to an ordination, to determine the robustness of the results.

Caution should be used when defining groups based on cluster analysis, particularly if long 
stems are not present. Even if the data form a continuous cloud in multivariate space, cluster 
analysis will still form clusters, although they may not be meaningful or natural groups. 
Comparison with an ordination will often show whether the groups are real or not.
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Transformations may be needed to put samples and variables on comparable scales; otherwise, 
clustering may reflect sample size or be dominated by variables with large values.

Cluster Analysis in R
In the code below, R commands are indicated with a bold monospaced font. The 
second and subsequent lines of code of a multiline command are indented.

The cluster package in R includes a wide spectrum of methods, corresponding to those 
presented in Kaufman and Rousseeuw (1990). Of the partitioning methods, pam() is based 
on partitioning around mediods, clara() is for clustering large applications, and fanny() 
uses fuzzy analysis clustering. Of the hierarchical methods, agnes() uses agglomerative 
nesting, diana() is based on divisive analysis, and mona() is based on monothetic analysis 
of binary variables. Another function is daisy(), which calculates dissimilarity matrices, 
although is limited to euclidean and manhattan distance measures. The agnes() method 
will be the focus of this tutorial.

1) First, load the cluster library needed to run agnes() and other clustering functions.

library(cluster) 

2) This demonstration will use a data set on Late Ordovician benthic marine 
macroinvertebrate communities from central Kentucky (Holland and Patzkowsky 2004), 
available on the GEOL 8370 website (http://strata.uga.edu/8370/data/). 

ky <- read.table('KentuckyCounts.txt', header=TRUE,  
  row.names=1, sep=',')  

3) Agglomerative nesting cluster analysis can be run with agnes(), using the defaults, which 
include a euclidean distance measure, an average (UPGMA) linkage method, and no 
standardization of variables.

defaultAgnes <- agnes(ky) 

3) Often, one will need to customize the cluster analysis by changing the distance measure 
(metric), the linkage method (method), or standardization of variables (stand). 
Standardization transforms the observations for each variable to have a zero mean and a unit 
variance, to prevent particular variables from dominating the analysis. Distance metrics are 
limited in agnes() to euclidean and manhattan.

For the ecological data used here, a different distance metric is more appropriate, specifically 
the Bray (also called Sørenson) distance measure. This can be applied using the vegdist() 
function in the vegan library.

library(vegan) 
kyDistance <- vegdist(ky, method='bray') 

This creates an n x n matrix (when done in Q-mode; p x p if in the R-mode), expressing the 
similarity of every sample (variable in R mode) with every other sample. Cluster analysis can 

Detrended Correspondence Analysis 4



then be performed on this distance matrix. Note that after the initial cluster is formed, 
subsequent distances will be calculated with the manhattan or euclidean measure, depending 
on how agnes() is called. In this case, the default of euclidean is appropriate.

Ward’s method is a useful linkage method for ecological data; this method adds samples to 
clusters based on minimizing the sum of squares. It results in relatively tight clusters.

kyCluster <- agnes(kyDistance, method='ward') 

6) The elements of the cluster object can be obtained with names(). 

names(kyCluster)  

Although several of these elements contain how the cluster analysis was done, such as linkage 
measure, five of them describe the output of the cluster analysis. order contains the numeric 
order of the samples in the dendrogram, with 1 being the sample at the left/top of the 
dendrogram, order.lab is the labels on the dendrogram, corresponding to the row names 
in the original data. merge describes the clusters joined at each step, and height stores the 
distances of the merging clusters, that is, the bars that connect clusters. ac reports the 
agglomerative coefficient, a measure of the clustering structure. Because its value is sensitive 
to sample size, use caution when comparing this coefficient among cluster analyses of 
different sample size. 

Note that all of these elements can be called with $ notation, such as kyCluster$order. 
They can also be shown with summary(), although the output may be voluminous.

summary(kyCluster) 

6) Plotting the dendrogram produced by a cluster analysis is straightforward, using the 
plot() command and specifying which.plots=2.

plot(kyCluster, which.plots=2, main='') 

Note that this results in two main clusters, which could be subdivided, with two on the left 
side, and perhaps three on the right side (although that is a matter of judgement).
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7) For graphical purposes, one might wish to spin the dendrogram like a mobile, so that 
certain clusters appear in a particular ordere from left to right. By editing the 
kyCluster$order and kyCluster$order.lab elements, it is possible to specify the 
left-to-right positions of the samples and clusters in the dendrogram. This must be done 
carefully to avoid a dendrogram that crosses over itself. To illustrate how this is done, we will 
spin the cluster so that the left-most cluster now appears on the right side of the dendrogram.

First, extract the order and of the samples and their matching labels. We will change these to 
match the order we would like.

order <- kyCluster$order 
label <- kyCluster$order.lab 

Spin the dendrogram to reverse the order of two clusters. This will require carefully counting 
how many samples are in each cluster.

order <- c(order[24:87], order[1:23]) 
label <- c(label[24:87], label[1:23]) 

Replace the order and labels with the spun order and labels.

kyCluster$order <- order 
kyCluster$order.lab <- label 

Plot the newly-spun cluster analysis. This process could be done to spin the dendrogram into 
any permissible orientation, that is, rotation around any vertical line.

plot(kyCluster, which.plots=2, main='') 
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