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Introduction
Suppose we had measured two variables, length and width, and plotted them as shown below. 
Both variables have approximately the same variance and they are highly correlated with one 
another. We could pass a vector through the long axis of the cloud of points and a second vec-
tor at right angles to the first, with both vectors passing through the centroid of the data.

Once we have made these vectors, we could find the coordinates of all of the data points rela-
tive to these two perpendicular vectors and re-plot the data, as shown here (both of these 
figures are from Swan and Sandilands, 1995).

In this new reference frame, note that variance is greater along axis 1 than it is on axis 2. Also 
note that the spatial relationships of the points are unchanged; this process has merely rotat-
ed the data. Finally, note that our new vectors, or axes, are uncorrelated. By performing such a 
rotation, the new axes might have particular explanations. In this case, axis 1 could be regard-
ed as a size measure, with samples on the left having both small length and width and samples 
on the right having large length and width. Axis 2 could be regarded as a measure of shape, 
with samples at any axis 1 position (that is, of a given size) having different length to width 
ratios. PC axes will generally not coincide exactly with any of the original variables.

Although these relationships may seem obvious, when one is dealing with many variables, this 
process allows one to assess much more quickly any relationships among variables. For data 
sets with many variables, the variance of some axes may be great, whereas others may be 
small, such that they can be ignored. This is known as reducing the dimensionality of a data 

Principal Components Analysis 1



set, such that one might start with thirty original variables, but might end with only two or 
three meaningful axes. The formal name for this approach of rotating data such that each 
successive axis displays a decreasing among of variance is known as Principal Components 
Analysis, or PCA. PCA produces linear combinations of the original variables to generate the 
axes, also known as principal components, or PCs.

Computation
Given a data matrix with p variables and n samples, the data are first centered on the means 
of each variable. This will insure that the cloud of data is centered on the origin of our princi-
pal components, but does not affect the spatial relationships of the data nor the variances 
along our variables. The first principal components (Y1) is given by the linear combination of 
the variables X1, X2, …,Xp,

or, in matrix notation,

The first principal component is calculated such that it accounts for the greatest possible 
variance in the data set. Of course, one could make the variance of Y1 as large as possible by 
choosing large values for the weights a11, a12, ... a1p. To prevent this, weights are calculated with 

the constraint that their sum of squares is 1.

The second principal component is calculated in the same way, with the condition that it is 
uncorrelated with (i.e., perpendicular to) the first principal component and that it accounts 
for the next highest variance.

This continues until a total of p principal components have been calculated, equal to the orig-
inal number of variables. At this point, the sum of the variances of all of the principal compo-
nents will equal the sum of the variances of all of the variables, that is, all of the original in-
formation has been explained or accounted for. Collectively, all of these transformations of 
the original variables to the principal components is

Calculating these transformations or weights requires a computer for all all but the smallest 
matrices. The rows of matrix A are called the eigenvectors of matrix Sx, the variance-covari-
ance matrix of the original data. The elements of an eigenvector are the weights aij, and are 
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also known as loadings. The elements in the diagonal of matrix Sy, the variance-covariance 
matrix of the principal components, are known as the eigenvalues. Eigenvalues are the vari-
ance explained by each principal component, and to repeat, are constrained to decrease mo-
notonically from the first principal component to the last. These eigenvalues are commonly 
plotted on a scree plot to show the decreasing rate at which variance is explained by addition-
al principal components.

The positions of each observation in this new coordinate system of principal components are 
called scores and are calculated as linear combinations of the original variables and the 
weights aij. For example, the score for the rth sample on the kth principal component is calcu-
lated as

In interpreting the principal components, it is often useful to know the correlations of the 
original variables with the principal components. The correlation of variable Xi and principal 
component Yj is

Because reduction of dimensionality, that is, focussing on a few principal components versus 
many variables, is a goal of principal components analysis, several criteria have been proposed 
for determining how many PCs should be investigated and how many should be ignored. One 
common criteria is to ignore principal components at the point at which the next PC offers 
little increase in the total variance explained. A second criteria is to include all those PCs up 
to a predetermined total percent variance explained, such as 90%. A third standard is to ig-
nore components whose variance explained is less than 1 when a correlation matrix is used or 
less than the average variance explained when a covariance matrix is used, with the idea being 
that such a PC offers less than one variable’s worth of information. A fourth standard is to 
ignore the last PCs whose variance explained is all roughly equal.

Principal components are equivalent to major axis regressions. As such, principal components 
analysis is subject to the same restrictions as regression, in particular multivariate normality. 
The distributions of each variable should be checked for normality and transforms used 
where necessary to correct high degrees of skewness in particular. Outliers should be removed 
from the data set as they can dominate the results of a principal components analysis.

PCA in R
1) For this example, we will use the Nashville carbonates geochemistry data set (Theiling et al. 
2007), available on the GEOL 8370 website (http://strata.uga.edu/8370/data/). This data set 
has geochemical analyses of 200 limestone samples, including the major elements Al, Ca, Fe, 
Mg, Mn, and Si, stable isotope ratios of carbon and oxygen (d13C and d18O). It also records 
the stratigraphic position of the samples. As we are most interested in how the geochemical 
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composition varies, we will pull those variables (columns 2–9) off into a separate data frame 
for our analysis.

> nashville <- read.table(file=‘NashvilleCarbonates.csv', 
header=TRUE, row.names=1, sep=',') 
> geochem <- nashville[ , 2:9] 

Many of the major elements (columns 3–8) are right-skewed, as might be expected for values 
that cannot go below zero, so a log-transformation is needed.

> geochem[ , 3:8] <- log10(geochem[ , 3:8]) 

In general, data sets will need some cleaning before a principal components analysis to ana-
lyze only those variables that should be included, to perform any necessary data transforma-
tions. Outliers and strongly skewed variables can distort a principal components analysis.

2) Of the several ways to perform an R-mode PCA in R, we will use the prcomp() function 
that comes pre-installed in the MASS package. To do a Q-mode PCA, the data set should be 
transposed first. R-mode PCA examines the correlations or covariances among variables, 
whereas Q-mode focusses on the correlations or covariances among samples.

> pca <- prcomp(geochem, scale.=TRUE) 

By default, prcomp() will center the data, that is, move the cloud of data so that its centroid 
is at the origin. However, prcomp() will  by default perform a principal components analysis 
on the variance-covariance matrix, which means that the absolute size of each variable will be 
considered. This will cause variables with larger values to contribute more than variables with 
smaller values. Although this is sometimes desirable, for this geochemical data we would like 
all of the variables to have an equal weight; in other words, we want the principal components 
analysis to be performed on a correlation matrix. To do this, we set the argument 
scale.=TRUE (don’t forget the period after scale).

The pca object holds everything we need (scores, loadings, variances), but the names where 
these are stored aren’t obvious. To keep things clear, it can be helpful to pull these compo-
nents out into more clearly named objects.

> variance <- (pca$sdev)^2 
> loadings <- pca$rotation 
> rownames(loadings) <- colnames(geochem)  
> scores <- pca$x 
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3) A scree plot is useful for understanding how variance is distributed among the principal 
components, and it should be the first step in analyzing a PCA. The scree plot is particularly 
critical for determining how many principal components should be interpreted. Although this 
could be done by calling plot(pca), a better-annotated plot that plots percent of total vari-
ance for each principal component can be made as follows. 

> varPercent <- variance/sum(variance) * 100 
> barplot(varPercent, xlab='PC', ylab='Percent Variance', 
names.arg=1:length(varPercent), las=1, col='gray') 

One guideline for the number of principal components to use is to accept all principal com-
ponents that explain more than one variable’s worth of data. If all the variables contributed 
the same variance, this cutoff would be 1/p, where p is the number of variables.

> abline(h=1/ncol(geochem)*100, col='red') 

For this data set, two or possibly three principal components should be examined closely. The 
first two PCs account for almost 60% of the variance, and there is a large drop-off in percent 
variance from the second to the third PC. The third PC accounts for slightly more than one 
variable’s worth of information (indicated by the red line), so it may also be worth exploring.
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4) A table of loadings should b examined next, as it shows which variables have high loadings 
(positive or negative) on each principal component, that is, which variables contribute most 
strongly to each PC. Examining this table can give you a good sense of what each principal 
component represents, in terms of the original data. A positive loading means that a variable 
correlates positively with the principal component; a negative loading indicates a negative 
correlation. Rounding the loadings to two or three decimal places often makes these tables 
easier to parse.

> round(loadings, 2) 

Since we will be considering only the first two or three PCs, we will display only those.

> round(loadings, 2)[ , 1:3] 

       PC1   PC2   PC3 
d13C -0.17 -0.23  0.64 
d18O  0.05  0.60  0.06 
Al   -0.50  0.29  0.03 
Ca    0.33  0.04  0.47 
Fe   -0.53 -0.09 -0.10 
Mg   -0.06  0.55  0.44 
Mn   -0.23 -0.42  0.39 
Si   -0.51  0.09 -0.06 

Note that Fe, Si, and Al have strong negative loading on axis 1, indicating that higher values 
on PC 1 correspond to lower concentrations of these elements. On PC 2, d18O and Mg have 
strong positive loadings, whereas Mn has a strong negative loading.

5) A biplot is a standard way of showing the sample scores and variable loadings in a single 
plot. Doing this will not only show which samples are similar to one another, but how the 
variables control this similarity. A distance biplot (see Legendre & Legendre, 1998, p. 403) 
preserves the true distances between samples, but at the cost of distorting (somewhat) the 
correlations among the variables. A distance biplot can be built with the built-in biplot() 
function.

> biplot(scores[, 1:2], loadings[, 1:2], cex=0.7) 

Often, it is more helpful to build this plot manually, which offers more control over its ap-
pearance.

> plot(scores[, 1], scores[, 2], xlab='PC 1', ylab='PC 2', 
type='n', xlim=c(min(scores[, 1:2]), max(scores[, 1:2])), 
ylim=c(min(scores[, 1:2]), max(scores[, 1:2])), las=1) 

The x and y limits of the plot are set to cover all the scores while keeping the same coordi-
nates for each axis.
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Labels are added to identify the samples, plotted at their scores.

> text(scores[, 1],scores[, 2], rownames(scores), col='gray', 
cex=0.7) 

When there are many data points or the sample names are long, showing the sample names 
may make for an illegible plot, so it may be better in those cases to plot the sample scores as 
points.

Next, arrows are added to show the loadings of each variable on each axis. A scaling factor is 
added to make the arrows long enough to be visible, yet still keep them within the bounds of 
the plot. Some experimentation may be necessary for other data sets to get an appropriate 
scaling factor. The base of each arrow is at the origin (centroid), and the tip is at the loadings 
for the two principal components.

> scale <- 5 
> arrows(0, 0, loadings[, 1]*scale, loadings[, 2]*scale, 
length=0.1, angle=20, col='red') 

Labels are added to identify the loading vectors. Another scaling factor is added to get the 
labels to plot just beyond the arrowheads. Again, some experimentation with this factor may 
be needed for other data sets

> labelScale <- 1.2 
> text(loadings[, 1]*scale*labelScale, loadings[, 2]*scale* 
labelScale, rownames(loadings), col='red', cex=0.7) 
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The distribution of samples can be informative about underlying patterns. For example, there 
are two groups of data, a tight cloud in the upper right, and a more diffuse cloud towards the 
lower left. Often, color-coding the sample scores by some external data can reveal the origin 
of these patterns. Here, these two groups of samples correspond closely to those above and 
below an unconformity (a major interruption in sediment deposition). This surface lies at a 
stratigraphic position of 34.2 m, with rocks below belonging to the Carters Formation and 
rocks above being in the Hermitage Formation. Coding points this way is illuminating.

Carters <- nashville$StratPosition < 34.2 
Hermitage <- nashville$StratPosition > 34.2 
plot(scores[, 1], scores[, 2], xlab='PC 1', ylab='PC 2', 
type='n', asp=1, las=1) 
points(scores[Carters, 1], scores[Carters, 2], pch=16, 
cex=0.7, col='blue') 
points(scores[Hermitage, 1], scores[Hermitage, 2], pch=16, 
cex=0.7, col='red') 
text(1, 3, 'Carters', col='blue') 
text(-1, -4, 'Hermitage', col=‘red') 

6) One can also make a correlation biplot, which preserves the correlations among the vari-
ables (expressed by the angles between the loading vectors), albeit with some distortion of the 
distances among the samples. In this case, the coordinates are scaled by the standard devia-
tions for each principal component (that is, the square root of the eigenvalue).
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> sd <- pca$sdev 
> plot(scores[, 1]/sd[1], scores[, 2]/sd[2], xlab='PC 1', 
ylab='PC 2', type='n', las=1) 

Labels for the sample scores are then added, again scaled by the standard deviations of the 
principal components.

> text(scores[, 1]/sd[1],scores[, 2]/sd[2], rownames(scores), 
col='gray', cex=0.7)  

Arrows are added to show the loadings, as are labels to identify the loadings. The coordinates 
of both are scaled by the standard deviations of the displayed principal components. The la-
bels also need a scaling factor to get them to plot just beyond the arrowheads.

> arrows(0, 0, loadings[, 1]*sd[1], loadings[, 2]*sd[2], 
length=0.1, angle=20, col='red') 
> labelScale <- 1.2  
> text(loadings[, 1]*sd[1]* labelScale, loadings[, 2]*sd[2]* 
labelScale, rownames(loadings), col='red', cex=0.7) 
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The built-in biplot() function purports to create a correlation biplot, but it doesn’t quite 
match the correlation biplot made following the description in Legendre and Legendre 
(1998). In addition, note that only the top and right axes match the coordinates of the sample 
scores. It is unclear what the built-in biplot() function is doing in this case, and I have 
been unable to replicate its plot using my own plotting commands.

> biplot(pca) 

7) Although the loadings describe how each variable contributes to each principal component, 
one can also calculate the correlation coefficient between the variables and the principal 
components by transposing the loadings and multiplying by the standard deviations (square 
roots of the eigenvalues) of the principal components.

> sd <- pca$sdev 
> correlations <- t(loadings) * sd 

This can also be done by calculating the Pearson correlation coefficients of the sample scores 
and the original data.

> correlations <- cor(scores, geochem) 

What to report
When reporting a principal components analysis, always include at least these items:

• A description of any data culling or data transformations that were used prior to ordination. 
State these in the order that they were performed.

• Whether the PCA was based on a variance-covariance matrix (i.e., scale.=FALSE was 
used) or a correlation matrix (i.e., scale.=TRUE was used).

• A scree plot that shows the explained variance of each of the principal components and that 
illustrates the criteria used for selecting the number of principal components to be studied.

• A table of loadings of all variables for each of the principal components that was studied. 
The table should highlight (e.g., with boldface) those loadings that are considered the most 
important for each principal component.

• One or more plots of sample scores that emphasizes the interpretation of the principal 
components, such as color-coding samples by an external variable. It is often useful to show 
the vectors corresponding to the loadings on these plots.

The deep dive: PCA by matrix operations
For those that are interested in matrix algebra that underlies a principal components analysis, 
it is possible to achieve the same solution as prcomp() purely through matrix operations in 
R.
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First, create a correlation matrix.

> corMatrix <- cor(geochem) 

Next, find the eigenvalues and eigenvectors of this correlation matrix through spectral de-
composition.

> eigenObject <- eigen(corMatrix) 

The eigenObject holds the eigenvalues (the variance explained by each principal compo-
nent) in eigenObject$values and the eigenvectors (the loadings) in 
eigenObject$vectors. The loadings lack row and column labels, so it is helpful to add 
them.

> pcaVariances <- eigenObject$values 

> pcaLoadings <- eigenObject$vectors 
> rownames(pcaLoadings) <- colnames(geochem) 
> PClabels <- paste('PC', 1:ncol(pcaLoadings), sep='') 
> colnames(pcaLoadings) <- PClabels 

Calculating the sample scores is done in three steps. First, we need to standardize our data so 
that the centroid is at the origin and all of the variables have the same variance, in other 
words, make all variables have a mean of zero and a standard deviation (variance) of 1. To do 
this, we create a function that will standardize one variable, and then we apply that function 
to every column (variable) in the data.

> standardize <- function(x) { (x - mean(x))/sd(x) }  
> geochemStand <- apply(geochem, MARGIN=2, FUN=standardize) 

Finally, sample scores are calculated by multiplying these standardized data by the loadings.

> pcaScores <- geochemStand %*% eigenObject$vectors 
> colnames(pcaScores) <- PClabels 

The scores, loadings, and variances are all identical to what the prcomp() function provides. 
You can check this by comparing scores to pcaScores, loadings to pcaLoadings, 
and variances to pcaVariances.
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