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Introduction
Species live on environmental gradients, and we often would like to describe their occurrence 
along those gradients. The distribution of a species along a gradient is known as a species re-
sponse curve. In modern environments, many species display a unimodal distribution along 
an environmental gradient, and this distribution is often symmetrical. Such a distribution can 
easily be modeled as a normal distribution, defined with three parameters. 

The optimum measures where a species is most likely to be found, that is the peak of a dis-
tribution. For any distribution, the optimum is equivalent to the mode of the distribution. 
For a symmetrical distribution, the optimum is also equivalent to the mean of the distribu-
tion. In our work, we have often called the optimum the preferred environment (PE) or, 
where we were dealing specifically with a water depth gradient, the preferred depth (PD).

The tolerance measures the ability of a species to live in non-optimal environments, that is, 
it describes the spread or width of a distribution. For a symmetrical distribution, this is 
equivalent to the standard deviation of the distribution. We have often called tolerance by the 
terms environmental tolerance (ET) or depth tolerance (DT).

The maximum measures how abundant a species is at its optimum, that is the height of the 
abundance distribution at the optimum. The maximum could be described in terms of abun-
dance, but it can also be described as a probability, such as the probability of encountering 
the species at the optimum. We have often used the term peak abundance (PA) for the 
maximum.

Although many species distributions can be described by a normal distribution with these 
three parameters, some species have different distributions. The most common alternative is 
an asymmetrical distribution, in which tail is much longer on one side of the optimum than 
the other. Asymmetrical distributions often arise when a species’ optimum lies close to a fixed 
boundary, such as a marine species whose optimum lies in very shallow water, or a terrestrial 
species whose optimum lies near sea level. Bimodal or polymodal distributions also occur, but 
they are much rarer than symmetrical and asymmetrical unimodal distributions. These notes 
will focus on symmetrical unimodal distributions.
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Computation
There are two main approaches to estimating optimum, tolerance, and maximum: weighted 
averaging and logistic regression. Both methods start with a standard species-abundance ma-
trix, with species in columns, and samples in rows. Both methods also need the position along 
an environmental gradient for each sample. The gradient may be direct, such as water depth, 
salinity, or temperature, or the gradient may be indirect, such as the sample scores from an 
ordination method, such as detrended correspondence analysis or multidimensional scaling.

Weighted averaging

The weighted averaging method gets its name from the calculation of the optimum: the 
abundance-weighted average gradient position of every sample bearing the species. By 
weighting this average by abundance, the importance of a sample containing many more indi-
viduals of a species (and therefore, likely close to the optimum) counts proportionally more 
than a sample containing only a single occurrence of the species (which is likely far from the 
optimum).

In ordination methods such as detrended correspondence analysis and non-metric multidi-
mensional scaling, species scores are calculated as abundance-weighted averages. If response 
curves are being calculated from these ordination methods, no additional calculations need to 
be made to obtain the optima - they are simply the species scores.

Tolerance is calculated by calculating the standard deviation of all gradient positions of the 
samples that contain the taxon. For ordination-based methods, tolerance is the standard de-
viation of the sample scores of samples bearing the taxon. If a species occurs over a limited 
set of gradient positions, this standard deviation will be small, and if a species occurs over a 
broad range of gradient positions, the standard deviation will reflect a large tolerance.

Maximum is estimated by first calculating the percent occurrence of a species in all samples 
that lie within one tolerance (i.e., standard deviation) of the optimum. This is multiplied by a 
a constant (approximately 1.169) that reflects the ratio of the peak height of a normal distrib-
ution to the average height of that distribution over the interval of the mean plus or minus 
one standard deviation. 

Logistic regression

Logistic regression is used when the dependent variable (in this case, the probability of occur-
rence) is constrained to lie between 0 and 1. A Gaussian function can be fitted to the occur-
rence data using this function:
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The right-hand side is an equation for a parabola, where x is the position along a gradient. 
The left-hand side, known as the transfer function, converts this parabola to a Gaussian dis-
tribution. The function logit(p) is the log-odds of the probability of collection, defined as

where p is the probability of collection of a taxon.

From this logistic regression and its three parameters, b0, b1, and b2, estimates of the opti-
mum (O), tolerance (T), and maximum (M) can be calculated:

Species response curves in R
To perform these methods, you will need an abundance matrix and a vector of gradient posi-
tions.

The abundance matrix should be the same as you would use in any ordination. Each column 
should contain the abundance of a single species, with each row reflecting a single sample. It 
will likely be useful to have species names in the first row of the data set and sample labels in 
the first column.

The vector of gradient positions should have the same length as the number of samples, and 
these gradient positions must be in the same order as the samples in the abundance matrix. If 
you use an ordination method to establish the gradients, the vector should be in the correct 
order.

For this tutorial, we will assume that you will want to use an ordination to establish the gradi-
ent. Although this will be illustrated here with detrended correspondence analysis (DCA), you 
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can follow a similar approach with non-metric multidimensional scaling or any other ordina-
tion.

First, read in the data. This tutorial uses the frankfort data, which consists of Ordovician ma-
rine invertebrates from the Frankfort, Kentucky area (Holland and Patzkowsky 2004).

frank <- read.table(file='frankfort.txt', header=TRUE, row.-
names=1, sep=',') 

Next, load the vegan library, which contains the useful data transformation function deco-
stand and the DCA function decorana.

library(vegan) 

Perform two data transformations. First standardize by row totals, which converts all the 
abundance counts to percentages, preventing sample size from dominating the ordination. 
Second, standardize by the maximum in each column, which sets the minimum value of every 
column to 0 and the maximum value to 1, in effect giving all species on the same weight. 

frank.t1 <- decostand(frank, method='total') 
frank.t2 <- decostand(frank.t1, method='max') 

Perform a detrended correspondence analysis on the doubly transformed data.

frank.dca <- decorana(frank.t2) 

It is helpful to extract the sample scores and species scores from the decorana output. We will 
focus only on axis 1, the most important source of variation in the data.

frank.sampscores1 <- scores(frank.dca, display="sites", choic-
es=1) 

frank.specscores1 <- scores(frank.dca, display="species", 
choices=1) 

At this point, you have everything you need: the abundance matrix (frank), a vector of gra-
dient positions of samples (frank.sampscores1), and a vector of gradient positions of 
species (frank.specscores1).

Weighted averaging

Getting a vector of optima (preferred environment, PE) is the easiest - it is just your vector of 
species scores.

PE <- frank.specscores1 

Next are the values of tolerance (environmental tolerance, ET). This begins by creating a vec-
tor ET to hold the results. It then loops through the species. For each species, it creates a 
temporary vector (occupiedPositions), which will hold all of the gradient positions at 
which the species occurred. For that species, the method steps through each sample score 
and checks to see if the abundance of that species in that sample is greater than zero, mean-
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ing the species is present. If it is present in that sample, the gradient position (sample score) 
is added to occupiedPositions. After all samples have been checked, the standard devia-
tion of the occupied gradient positions is calculated, which gives the tolerance for that 
species. This procedure is repeated for all species.

ET <- vector(length=length(PE)) 
for (species in 1:length(PE) { 
  occupiedPositions <- vector(length=0) 
  i <- 1 
  for (sample in 1:length(frank.sampscores1) { 
	   if (frank[sample,species]>0) { 
	     occupiedPositions[i] <- frank.sampscores1[sample] 
	     i <- i+1 
	   } 
  } 
  ET[species] <- sd(occupiedPositions) 
} 

If you discover a way to vectorize this code and remove the loops, I’d appreciate knowing how 
you did it.

The last step is to calculate the maxima, which follows a similar pattern of looping through all 
of the species. First, a vector is created to hold all maxima (PA) for each species. For each 
species, variables are created to hold the total number of samples within one tolerance of the 
optimum for that species (total) and the number of those samples that contain that species 
(present). Both of these are initially set to 0. Each sample is then checked for that species. 
If the gradient position of that sample lies within the optimum plus or minus one tolerance 
for the species, total is incremented by 1, and the abundance is checked. If it is found, 
present is incremented by 1. The final line calculates the maxima as a percentage, with the 
correction factor.

PA <- vector(length=length(PE)) 
for (species in 1:length(frank.specscores1)) 
{ 
  present <- 0 
  total <- 0 
  for (sample in 1:length(frank.sampscores1)){ 
	   if (abs(frank.sampscores1[sample]-   
             frank.specscores1[species]) <= ET[species]) { 
	     total <- total + 1 
	     if (frank[sample, species] > 0) { 
	   	  present <- present + 1 
	     } 
	   }     
  } 
  PA[species] <- present/total * 100 * 1.168739 
} 
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For convenience, all of this can be wrapped in a function that takes the abundance matrix, the 
sample score vector, and the species score vector as arguments. The function returns a data 
frame with columns for optimum (PE), tolerance (ET), and maximum (PA).

speciesResponseWeightedAveraging <- function(abundance,       
 sampscores, specscores) { 
	 numSamples <- length(sampscores) 
	 numSpecies <- length(specscores) 

	 PE <- specscores 
	  
	 ET <- vector(length=numSpecies) 
	 for (species in 1:numSpecies) { 
	   occupiedPositions <- vector(length=0) 
	   i <- 1 
	   for (sample in 1:numSamples) { 
	 	 if (abundance[sample, species]>0) { 
	 	   occupiedPositions[i] <- sampscores[sample] 
	 	   i <- i+1 
	 	 } 
	   } 
	   ET[species] <- sd(occupiedPositions) 
	 } 
	  
	 PA <- vector(length=numSpecies) 
	 for (species in 1:numSpecies) { 
	   present <- 0 
	   total <- 0 
	   for (sample in 1:numSamples) { 
	 	 if (abs(sampscores[sample]-specscores[species])  
              <= ET[species]) { 
	 	   total <- total + 1 
	 	   if (abundance[sample, species]>0) { 
	 	 	 present <- present + 1 
	 	   } 
	 	 }     
	   } 
	   PA[species] <- present/total * 100 * 1.168739 
	 } 
	  
	 threeparams <- data.frame(PE=PE, ET=ET, PA=PA) 
} 

Call it like this, and assign the results so that they can be viewed.

params <- speciesResponseWeightedAveraging(frank, frank.samp-
scores1, frank.specscores1) 
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Logistic regression

Logistic regression is based simply on whether a species occurs at any of the gradient posi-
tions. For this method, you will need a vector of gradient positions (frank.sampscores1), 
and you will need a vector of whether the species occurs at that gradient position. To illus-
trate the method, we will use the common brachiopod Hebertella in the Frankfort data (col-
umn 13) and convert its abundances to presence/absence. This is done by finding every value 
that is greater than zero and replacing it with a 1, such that all values are now 0 (absent) or 1 
(present).

species13 <- frank[, 13] 
species13[species13 > 0] <- 1 

For clarity, we will call the sample scores x, as they are the independent variable, and we will 
call the presence/absence data y, as they are the dependent variable.

	 x <- frank.sampscores1 
	 y <- species13 

The logistic regression is performed with glm() command and assign the results to an ob-
ject.

	 logitReg <- glm(y ~ x + I(x^2), family=binomial) 
	  

The glm() command will produce warnings if a regression could not be fit to the data, which 
happens in some cases.

For clarity, we will relabel the coefficients from the regression object to match the logistic 
equation given above.

	 b0 <- logitReg$coefficients[1] 
	 b1 <- logitReg$coefficients[2] 
	 b2 <- logitReg$coefficients[3] 

The optimum (opt), tolerance (tol), and maximum (pmax) are calculated as shown.

	 opt <- (-b1)/(2*b2) 
	 tol <- 1 / sqrt(-2*b2) 
	 pmax <- 1 / (1 + exp(b1^2 / (4 * b2) - b0)) 

For convenience, this can be wrapped in a function to calculate the optimum, tolerance, and 
maximum for one species. It should be supplied with a data frame, in which column 1 con-
tains the gradient positions, and column 2 contains the presence/absence data. The results are 
bound together with cbind() and returned as a matrix.

tBLparamsForOneSpecies <- function(theData) { 
	 x <- theData[ ,1] 
	 y <- theData[ ,2] 
	  
	 logitReg <- glm(y ~ x + I(x^2), family=binomial) 
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	 b0 <- logitReg$coefficients[1] 
	 b1 <- logitReg$coefficients[2] 
	 b2 <- logitReg$coefficients[3] 

	 opt <- (-b1)/(2*b2) 
	 tol <- 1 / sqrt(-2*b2) 
	 pmax <- 1 / (1 + exp(b1^2 / (4 * b2) - b0)) 
	  
	 theParams <- cbind(opt, tol, pmax) 
	 theParams 
} 

More generally, you will likely want to calculate these parameters on an entire data set, not 
just one species. The following function does that. The first parameter is a vector of sample 
scores, and the second is the matrix of species abundances. In cases where values cannot be 
computed, two lines near the end of the function replace the missing values with NaN (not a 
number). If this replacement is necessary, you will see a warning message after issuing the 
command.

tBLparamsForSpeciesMatrix <- function(sampleValues,  
  abundanceMatrix) { 
	 numTaxa <- ncol(abundanceMatrix) 
	  
	 opt <- vector(mode="numeric", length=numTaxa) 
	 tol <- vector(mode="numeric", length=numTaxa) 
	 pmax <- vector(mode="numeric", length=numTaxa) 
	 	  
	 for (t in 1:numTaxa) { 
	 	 x <- sampleValues 
	 	 y <- abundanceMatrix[ ,t] 
	 	 y[y>0] <- 1 
	 	  
	 	 logitReg <- glm(y ~ x + I(x^2), family=binomial) 
	  
	 	 b0 <- logitReg$coefficients[1] 
	 	 b1 <- logitReg$coefficients[2] 
	 	 b2 <- logitReg$coefficients[3] 

	 	 opt[t] <- (-b1)/(2*b2) 
	 	 tol[t] <- 1 / sqrt(-2*b2) 
	 	 pmax[t] <- 1 / (1 + exp(b1^2 / (4 * b2) - b0)) 
	 } 
	  
	 tBLParams <- data.frame(opt, tol, pmax) 
	 tBLParams$opt[is.na(tBLParams$tol)] <- NaN 
	 tBLParams$pmax[is.na(tBLParams$tol)] <- NaN 
	  
	 rownames(tBLParams) <- colnames(abundanceMatrix) 
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	 tBLParams 
} 

When calling this function, assign the results to an object so that you can use them. Each row 
corresponds to a species, in the same order as the columns of your abundance matrix. The 
columns correspond to optimum (opt), tolerance (tol), and maximum (pmax).

params <- tBLparamsForSpeciesMatrix(frank.sampscores1, frank) 
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