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Introduction
Correspondence analysis (CA) was first introduced to ecology in the early 1970s as reciprocal 
averaging (RA) and quickly gained in popularity because of its better recovery of one-
dimensional simulated gradients, compared to principal components analysis.  Correspon-
dence analysis also assumed modal relationships of taxa relative to ecological gradients, as 
opposed to the linear relationship underlying principal components analysis, and was a more 
attractive method on these theoretical grounds.  

Detrended correspondence analysis (DCA) was developed to overcome the distortions inher-
ent to correspondence analysis ordination, in particular the tendency for one-dimensional 
gradients to be distorted into an arch on the second ordination axis and for the tendency for 
samples to be unevenly spaced along the axis 1.  DCA overcomes these problems by flattening 
this arch and rescaling the positions of samples along an axis.  In general, DCA ordinations 
perform better with simulated data than do CA/RA ordinations.  

Computation
Correspondence analysis / reciprocal averaging can be calculated with an eigenanalysis ap-
proach and with a reciprocal averaging approach.  The latter is more intuitive, so the recipro-
cal averaging approach will be presented here.  Beginning as usual with a matrix of n rows of 
samples and p columns of taxa, each sample is assigned an arbitrarily chosen score (xi).  Scores 
for each taxon (yj) are then calculated as a weighted average, where the abundance of a taxon 
(aij) is multiplied by the sample score, and these are summed across all samples and divided by 

the total abundance for that taxon.  These taxon scores are then used to calculate a new set of 
sample scores following the same procedure in which the abundance of a taxon is multiplied 
by the taxon score and these are summed across all taxa and divided by the total abundance 

within each sample.  Sample scores are then centered and standardized such that their mean 

yj =
∑n

i=1 aijxi

a+j

xi =
∑p

j=1 aijyj

ai+
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is zero and their variance is one.  This procedure of alternately calculating sample and taxon 
scores is repeated until the scores stabilize.  This initial pass produces the CA axis 1 scores for 
both samples and taxa.  The same procedure can be performed to produce higher-order axes 
that are orthogonal with lower-order axes.  

Detrended correspondence analysis begins with a correspondence analysis, but follows it with 
steps to detrend (hence its name) and rescale axes.  Several methods have been used to de-
trend an axis.  In the simplest approach, the axis is first divided into an arbitrary number of 
equal-length segments.  Within each segment, the scores on the next higher-order axis are 
recentered such that there mean is zero.  In effect, if there is arch present, it is flattened onto 
the lower-order axis.  The detrending process is sensitive to the number of segments and the 
default value is 26, which has empirically produced acceptable results.  Others have proposed 
using polynomial regressions for rescaling and others have used a sliding moving average win-
dow, which is what the algorithm in R does.  The rescaling of an axis is accomplished by 
equalizing the weighted variance of taxon scores along the axis segments.

Considerations
Correspondence analysis suffers from a two well-known distortions that limit its usefulness 
for ecological ordinations.  First, a one-dimensional ecological gradient is commonly bent into 
an arch in axis 1 - axis 2 space.  In general, higher-order axes contain quadratic distortions of 
lower-order axes, which hampers their interpretation.  Second, scores are typically com-
pressed near the ends along axis 1 relative to their original spacing along the ecological gradi-
ent, limiting the ability to use axis 1 scores of a linear proxy of position along an environ-
mental gradient.  In addition to these distortions, correspondence analysis has an underlying 
chi-square distance measure that can overemphasize the importance of rare taxa.  In large 
samples that contain multiple rare taxa, perhaps solely because of the large size of the sample, 
the chi-square distance can exaggerate the how distinctive the sample is.

The detrending and rescaling algorithms in detrended correspondence analysis do not fully 
eliminate distortions of the underlying data structure and can introduce new distortions in 
some cases.  One common distortion of a two-dimensional gradient can be envisioned by tak-
ing a piece of paper and twisting it, such that axis 1 is preserved reasonably undistorted, but 
the second axis of variation is expressed on DCA axis 2 and one end and on DCA axis 3 at the 
opposite end.  This produces the well-known DCA wedge, consisting of a tapering of sample 
points in axis 1-2 space and an opposing wedge in axis 1-3 space.  

Several ecological studies have simulated two-dimensional gradients and subjected them to a 
variety of ordination methods to compare their results.  Principal components analysis and 
correspondence analysis typically display severe distortions of a horseshoe and an arch, re-
spectively, so they should be used in ecological data only with considerable caution.  De-

n∑

i=1

ai+xi = 0 and
n∑

i=1

ai+x2
i = 1
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trended correspondence analysis and multidimensional scaling commonly perform much bet-
ter and display minimal distortions in most cases.  Because DCA can produce stronger distor-
tions than MDS in some of the simulations, ecologists have embraced MDS as the method of 
choice.  However, similar explorations of such simulations have also revealed cases of strong 
distortion in MDS.  Likewise, some authors have reported that DCA ordinations are more 
interpretable than those from MDS.  Both of these observations suggest that the stronger 
condemnations of DCA that have appeared in the ecological literature may be overstated.

CA and DCA in R
Correspondence analysis and detrended correspondence analysis can each be run from the 
decorana() command in the vegan package.

1) Download and install the vegan library, necessary for running the decorana() command and 
the data transformations.

> library(vegan)     # necessary for decorana()

2) Perform a correspondence analysis / reciprocal averaging on a data set

> mydata <- read.table(file="frankfort.txt", header=TRUE, 
   row.names=1, sep=",")

> mydata.ra <- decorana(mydata, ira=1)  
# ira=1 specifies RA

3) Perform a detrended correspondence analysis on a data set, preceded by transformations to 
correct for differences in sample size and differences in abundance among taxa.

> mydata.t1 <- decostand(mydata, "total")  
# percent transformation on samples
# “total” method defaults to rows (samples)

> mydata.t2 <- decostand(mydata.t1, "max") 
# percent of maximum transformation on taxa
# “max” method defaults to columns (taxa)

> mydata.t2.dca <- decorana(mydata.t2)  
# default ira=0 specifies DCA

> mydata.t2.dca.DW <- decorana(mydata.t2, iweigh=1) 
# iweigh=1 turns on down-weighting of rare taxa, 
# dampening their 
# effects on the ordination.

4) View items in the list produced by decorana.  The most useful elements will be rproj and 
cproj.

> names(mydata.t2.dca)
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# mydata.t2.dca$rproj: sample scores for the first 4 axes
# mydata.t2.dca$cproj: taxon scores for the first 4 axes
# mydata.t2.dca$evals: eigenvalues for the first 4 axes
# mydata.t2.dca$evals.decorana: legacy eigenvalues - 
#  do not use
# mydata.t2.dca$origin: origin in DCA; used for plotting
# mydata.t2.dca$v: unknown
# mydata.t2.dca$fraction: abundance fraction where 
# downweighting begins
# mydata.t2.dca$adotj: sum of abundances of taxa
# mydata.t2.dca$aidot: sum of abundances within samples
# mydata.t2.dca$iweigh: whether down-weighting of rare 
#  taxa was turned on, 0 for no, 1 for yes
# mydata.t2.dca$iresc: number of rescaling cycles
# mydata.t2.dca$ira: method invoked - 0 for DCA (default)
#  1 for RA/CA
# mydata.t2.dca$mk: number of segments in rescaling
# mydata.t2.dca$short: length of shortest gradient to be 
#  rescaled
# mydata.t2.dca$before: values before Hill’s piecewise 
#  transformation, if used;
#  by default, transformation is not used.
# mydata.t2.dca$after: values after Hills’s piecewise 
#  transformation
# mydata.t2.dca$call: function call

5) View summary of dca results, including function call, eigenvalues, taxon scores, and sample 
scores.  

> summary(mydata.t2.dca)

6) Extract scores from decorana output.

> mydata.t2.dca.taxonscores <- scores(mydata.t2.dca, 
   display=c("species"), choices=c(1,2))
# extracts axis 1 & 2 scores for taxa

> mydata.t2.dca.taxonscores <- mydata.t2.dca$cproj[ ,1:2]
# alternative approach

> mydata.t2.dca.samplescores <- scores(mydata.t2.dca, 
   display=c("sites"), choices=1)
# extracts only axis 1 scores for samples

> mydata.t2.dca.taxonscores <- mydata.t2.dca$rproj[ ,1]
# alternative approach

7) Plot scores from decorana.

> plot(mydata.t2.dca)  
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# Samples are shown as black open circles, taxa are 
# displayed with red crosses

8) Plot scores, but with customization of symbols and labels

> plot(mydata.t2.dca, display=c(”none”), cols=c(1,2)) 
# plot axis 1 & 2, but display no points or labels

> points(mydata.t2.dca, display=c(”sites”), choices=1:2, 
   pch=3, col=”green”)  
# plot samples as green crosses for axis 1 and 2

> text(mydata.t2.dca, display=c(”species”), choices=1:2, 
   cex=0.7)
# plot labels for taxa for axis 1 and 2, using cex to shrink 
# size of labels. Larger plots may also be used to alleviate 
# congestion of labels.
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9) Plot sample scores, color-coded by an external variable, such as lithofacies.

> myFacies <- read.table(file="frankfacies.txt", header=TRUE, 
   row.names=1, sep=",")
# Read in external file with numeric code for each facies.  
# The first column of this file has the same locality codes, 
# in the same order as the original data file.

> t2.dca.scores <- mydata.t2.dca$rproj[ ,1:2]
# Extract axis 1 & 2 sample scores

> t2.dca.scoresFacies <- data.frame(t2.dca1=t2.dca.scores[,1], 
   t2.dca2=t2.dca.scores[,2], facies=myFacies)
> attach(t2.dca.scoresFacies)
# Merge facies codes and samples scores into single data frame

> plot(t2.dca1, t2.dca2, type="n", xlab="DCA Axis 1",  
   ylab="DCA Axis 2", main="Sample Scores, by Facies")
> points(t2.dca1[facies=="OF"], t2.dca2[facies=="OF"], 
   col="black", pch=16)
> points(t2.dca1[facies=="DS"], t2.dca2[facies=="DS"], 
   col="blue", pch=16)
> points(t2.dca1[facies=="SS"], t2.dca2[facies=="SS"], 
   col="orange", pch=16)
> points(t2.dca1[facies=="SH"], t2.dca2[facies=="SH"], 
   col="red", pch=16)
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10) Visualize the effects of not running the second transformation, which equalized differ-
ences among abundance of taxa.

> mydata.t1.dca <- decorana(mydata.t1)
> t1.dca.scores <- mydata.t1.dca$rproj[ ,1:2]
> t1.dca.scoresFacies <- data.frame(t1.dca1=t1.dca.scores[,1], 
   t1.dca2=t1.dca.scores[,2], facies=myFacies)
> attach(t1.dca.scoresFacies)
> plot(t1.dca1, t1.dca2, type="n", xlab="DCA Axis 1", 
   ylab="DCA Axis 2", main="Sample Scores, by Facies")
> points(t1.dca1[facies=="OF"], t1.dca2[facies=="OF"], 
   col="black", pch=16)
> points(t1.dca1[facies=="DS"], t1.dca2[facies=="DS"], 
   col="blue", pch=16)
> points(t1.dca1[facies=="SS"], t1.dca2[facies=="SS"], 
   col="orange", pch=16)
> points(t1.dca1[facies=="SH"], t1.dca2[facies=="SH"], 
   col="red", pch=16)
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11) Compare results of two ordinations quantitatively, using procrustes().  This example will 
compare DCA with and without the second data transformation.  The procrustes() function 
rotates, inverts, translates, and rescales two ordinations to produce the best fit in the posi-
tions of objects.

> comparison <- procrustes(t2.dca.scores, t1.dca.scores)

> plot(comparison)  
# displays plot showing first ordination (tips of blue
# arrow) relative to second ordination (open black circles)
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> plot(comparison, kind=2) 
# displays differences in ordination position for each 
# sample. Note that some samples (e.g., #23) have greatly 
# different ordination positions, indicated by the large 
# Procrustes errors
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